范数

范数

本文地址:blog.lucien.ink/archives/494

转载自:0 范数、1 范数、2 范数有什么区别? - 魏通的回答 - 知乎,稍作整理。

简介

维基百科:范数(norm),是具有“长度”概念的函数。在线性代数、泛函分析及相关的数学领域,是一个函数,其为向量空间内的所有向量赋予非零的正长度或大小。另一方面,半范数(seminorm)可以为非零的向量赋予零长度。

向量范数

0-范数

向量非零元素个数。

1-范数

向量元素绝对值之和。

∥ x ∥ 1 = ∑ i = 1 N ∣ x i ∣ \left\| \boldsymbol x \right\|_1 = \sum \limits_{ i = 1 }^{ N } | x_i | x1=i=1Nxi

2-范数

E u c l i d Euclid Euclid 范数(欧几里得范数),可以用来计算向量长度,即向量元素的平方和再开方。

∥ x ∥ 2 = ∑ i = 1 N x i 2 \left\| \boldsymbol x \right\|_2 = \sqrt{ \sum \limits_{ i = 1 }^{ N } x_i^2 } x2=i=1Nxi2

∞ \infty -范数

所有向量元素绝对值中的最大值。

∥ x ∥ ∞ = max ⁡ i ∣ x i ∣ \left\| \boldsymbol x \right\|_{ \infty } = \max_i | x_i | x=imaxxi

− ∞ -\infty -范数

所有向量元素绝对值中的最大值。

∥ x ∥ − ∞ = min ⁡ i ∣ x i ∣ \left\| \boldsymbol x \right\|_{ -\infty } = \min_i | x_i | x=iminxi

p-范数

向量元素绝对值的 p p p 次方和的 1 p \frac{ 1 }{ p } p1 次幂。

∥ x ∥ p = ( ∑ i = 1 N ∣ x i ∣ p ) 1 p \left\| \boldsymbol x \right\|_p = (\sum \limits_{ i = 1 }^{ N } | x_i |^p)^{ \frac{ 1 }{ p } } xp=(i=1Nxip)p1

矩阵范数

1-范数

列和范数,即所有矩阵列向量绝对值之和的最大值。

∥ A ∥ 1 = max ⁡ j ∑ i = 1 N ∣ a i , j ∣ \left\| A \right\|_1 = \max_j \sum \limits_{ i = 1 }^{ N } | a_{ i, j } | A1=jmaxi=1Nai,j

2-范数

λ 1 \lambda_1 λ1 A T A A^TA ATA 的最大特征值。

∥ A ∥ 2 = λ 1 \left\| A \right\|_2 = \sqrt{ \lambda_1 } A2=λ1

∞ \infty -范数

所有矩阵行向量绝对值之和的最大值。

∥ A ∥ ∞ = max ⁡ i ∑ j = 1 N ∣ a i , j ∣ \left\| A \right\|_{ \infty } = \max_i \sum \limits_{ j = 1 }^{ N } | a_{ i, j } | A=imaxj=1Nai,j

F-范数

F r o b e n i u s Frobenius Frobenius 范数,即矩阵所有元素的平方和再开方。

∥ A ∥ F = ∑ i = 1 n ∑ j = 1 m a i , j 2 \left\| A \right\|_F = \sqrt{ \sum \limits_{ i = 1 }^{ n } \sum \limits_{ j = 1 }^{ m } a_{ i, j }^2 } AF=i=1nj=1mai,j2

核范数

λ i \lambda_i λi A A A 的奇异值,即奇异值之和。

∥ A ∥ ∗ = ∑ i = 1 n λ i \left\| A \right\|_* = \sum \limits_{ i = 1 }^{ n } \lambda_i A=i=1nλi

相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页